Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5
نویسندگان
چکیده
Aerosols from open-land fires could significantly perturb the global radiation balance and induce climate change. In this study, Community Atmosphere Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative effects (REs, relative to the case of no fires) of open-fire aerosols including black carbon (BC) and particulate organic matter (POM) from 2003 to 2011. The global annual mean RE from aerosol–radiation interactions (REari) of all fire aerosols is 0.16± 0.01 W m−2 (1σ uncertainty), mainly due to the absorption of fire BC (0.25± 0.01 W m−2), while fire POM induces a small effect (−0.05 and 0.04± 0.01 W m−2 based on two different methods). Strong positive REari is found in the Arctic and in the oceanic regions west of southern Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean RE due to aerosol–cloud interactions (REaci) of all fire aerosols is −0.70± 0.05 W m−2, resulting mainly from the fire POM effect (−0.59± 0.03 W m−2). REari (0.43± 0.03 W m−2) and REaci (−1.38± 0.23 W m−2) in the Arctic are stronger than in the tropics (0.17± 0.02 and −0.82± 0.09 W m−2 for REari and REaci), although the fire aerosol burden is higher in the tropics. The large cloud liquid water path over land areas and low solar zenith angle of the Arctic favor the strong fire aerosol REaci (up to−15 W m−2) during the Arctic summer. Significant surface cooling, precipitation reduction and increasing amounts of low-level cloud are also found in the Arctic summer as a result of the fire aerosol REaci based on the atmosphere-only simulations. The global annual mean RE due to surface-albedo changes (REsac) over land areas (0.03± 0.10 W m−2) is small and statistically insignificant and is mainly due to the fire BC-in-snow effect (0.02 W m−2) with the maximum albedo effect occurring in spring (0.12 W m−2) when snow starts to melt.
منابع مشابه
Impacts of Global Open Fire Aerosols on Direct Radiative , Cloud 1 ! and Surface - Albedo Effects Simulated with CAM 5 2 ! 3 !
متن کامل
Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires
Open-burning fires play an important role in the earth’s climate system. In addition to contributing a substantial fraction of global emissions of carbon dioxide, they are a major source of atmospheric aerosols containing organic carbon, black carbon, and sulfate. These “fire aerosols” can influence the climate via direct and indirect radiative effects. In this study, we investigate these radia...
متن کاملQuantifying aerosol direct radiative effect with Multiangle Imaging Spectroradiometer observations: Top-of-atmosphere albedo change by aerosols based on land surface types
[1] Using internally consistent albedo, aerosol, cloud, and surface data from the Multiangle Imaging Spectroradiometer (MISR) instrument onboard the Terra satellite, top-of-atmosphere (TOA) spectral albedo change (da) in the presence of aerosols over land is estimated and its dependence on aerosol and surface properties is analyzed. Linear regressions between spectral TOA albedo and aerosol opt...
متن کاملIncorporation of advanced aerosol activation treatments into CESM/CAM5: model evaluation and impacts on aerosol indirect effects
One of the greatest sources of uncertainty in the science of anthropogenic climate change is from aerosol– cloud interactions. The activation of aerosols into cloud droplets is a direct microphysical linkage between aerosols and clouds; parameterizations of this process link aerosol with cloud condensation nuclei (CCN) and the resulting indirect effects. Small differences between parameterizati...
متن کاملAerosol Impacts on Climate and Biogeochemistry
Aerosols are suspensions of solid and/or liquid particles in the atmosphere andmodify atmospheric radiative fluxes and chemistry. Aerosols move mass from one part of the earth system to other parts of the earth system, thereby modifying biogeochemistry and the snow surface albedo. This paper reviews our understanding of the impacts of aerosols on climate through direct radiative changes, aeroso...
متن کامل